DEPARTMENT OF ELECTRONICS, MES COLLEGE MARAMPALLY

Program outcomes, Program specific outcomes and Course outcomes

PROGRAMME: MSc. ELECTRONICS

PROGRAMME OUTCOME (PO)

PO1: To acquire technical exposure, nurturing of career improvement/ advancement in the Electronics field .

PO2: To inculcate research aptitude of our young scholars.

PO3: To develop a sense of human values and social consciousness.

PROGRAMME SPECIFIC OUTCOME (PSO)

PSO1: The course contents are intended to give the students a holistic and pragmatic view of the present scenario of the Electronics Industry.

PSO2: The course gives grounding in the concepts and theories that will shape the future of the Electronics Industry by giving due consideration to environment protection and sustainability.

COURSE OUTCOME (CO)

FIRST SEMESTER

Course: ELECTRONIC DEVICES AND CIRCUIT DESIGN

CO1: To equip the students with circuit level application concepts Electronic Devices.

CO2: To equip the students to excel l in the design of Analog Electronic circuits.

CO3: To equip the students to excel l in the design of Digital Electronic circuits.

Course: MODERN COMMUNICATION SYSTEMS

CO1: To equip the student to understand basics of Digital communication and its applications

CO2: To equip the student to understand basics of Fiber Optics & Mobile Communication.

CO3: To equip the student to understand basics of Satellite Communication & Radar Systems

Course: ADVANCED NETWORKS AND SYSTEMS

CO1: To equip the student to understand basic and advanced networks.

CO2: To equip the student to understand Laplace and Fourier Transforms

CO3: To equip the student to understand how passive Networks are Synthesized.

Course: MEMS AND POWER ELECTRONICS

CO1: To equip the student to understand Principles of MEMS and its fabrication.

CO2: To equip the student to understand the Power Electronics Devices and Circuits.

Course: ADVANCED ELECTRONICS LAB AND POWER ELECTRONICS LAB

CO1: To equip the student to get practical knowledge in designing the Digital Electronics Circuits like

CO2: To acquire practical knowledge in Integrated Circuits which are having importance in the application of Electronics.

CO3: To equip the student to familiarize the controlling of high power equipment.

CO4: To equip the student to familiarize the different communication and modulation techniques.

SECOND SEMESTER

Course: DIGITAL SIGNAL PROCESSING AND APPLICATIONS

CO1: To equip the student to understand the basics of Digital Signal Processing.

CO2: To equip the student to understand the basics of Image Processing

CO3: To equip the student to understand the various Coding Standards.

Course: MICROCONTROLLERS AND EMBEDDED SYSTEM

CO1: To equip the student to understand different Microcontrollers.

CO2: To equip the student for Programming and Interfacing the Microcontrollers.

CO3: To equip the student to understand different Simulators.

Course: ROBOTICS AND MECHATRONICS

CO1: To equip the student to understand basics of Robotics.

CO2: To equip the student to understand different types of Sensors and Actuators.

CO3: To equip the student to understand basics of Mechatronics

Course: VLSI DESIGN AND ANALYSIS

- **CO1:** To equip the student to understand basics of MOS Technology
- **CO2:** To equip the student to understand the MOS Circuit Design Process and Layout.

CO3: To give an introduction to the VHDL Programming Language.

Course: MICROCONTROLLER AND SIGNAL PROCESSING LAB

CO1: To equip the student to Interface Peripherals with AVR Microcontroller.

CO2: To equip the student to familiarize various tool boxes in MATLab.

THIRD SEMESTER

Course: OPTICAL COMMUNICATION TECHNIQUES

CO1: To equip the student to understand the Fiber Structure, Waveguiding and Signal Degradation.

CO2: To equip the student to understand the Power Launching , Coupling in Optical Fibers &Photodetectors.

CO3: To equip the student to understand the Optical NetworkMeasurement&Monitoring Techniques.

Course:PROGRAMMING IN C++

CO1: To equip the student to understand the Object Oriented Programming concepts.

CO2: To equip the student to understand the Inheritance, Polymorphism and Pointers.

CO3: To equip the student to understand the Files.

Course: DATA COMMUNICATION AND INTERNET TECHNOLOGY

CO1: To equip the student to understand the Data Communication System.

CO2: To equip the student to understand the Error Control, Data Link Control & Multiple Access in Data Communication Systems.

CO3: To equip the student to understand the LANs and Internetworking.

Course: CONTROL SYSTEMS

CO1: To equip the student to understand the Mathematical Models of Physical Systems.

CO2: To equip the student to understand the Time Response Analysis and Stability Analysis.

Course: C++ PROGRAMMING LAB

CO1: To equip the student with the Programming skills.

CO2: To equip the student to with the Programming in Graphics.

CO1: To equip the student to Interface Peripherals.

FOURTH SEMESTER

Course: ADVANCED EMBEDDED SYSTEMS

CO1: To equip the student to understand the ARM Architecture and Programming.

CO2: To equip the student to understand the Basic Concepts in VHDL.

CO3: To equip the student to understand the Modeling and Features in VHDL.

Course: SECURE COMMUNICATION

CO1: To provide a practical survey of the principles and practice of cryptography

CO2: To equip the student to understand the network security.

Course: BIOMEDICAL ELECTRONICS AND BIOSENSORS

CO1: To get a basic understanding of fundamental principles of Biomedical Instrumentation.

CO2: To equip the student to understand different Measuring Techniques.

CO3: To equip the student to understand different Biosensors.

Course: VHDL PROGRAMMING LAB

CO1: To equip the student to Design and simulation of Combinational Logic Circuit circuit using VHDL.

CO2: To equip the student to Design and simulation of Sequential logic circuit using VHDL.