

ENERGY AUDIT - 2021-22

MES COLLEGE MARAMPALLY

Aluva, Ernakulam Kerala

EXECUTED BY

ATHUL ENERGY CONSULTANTS PVT LTD

4th FLOOR, CAPITAL LEGEND BUILDING, KORAPPATH LANE, ROUND NORTH, THRISSUR, KERALA-680020 Ph: +91 735611199/0-6 Web: www.athulenergy.com E-Mail: info@athulenergy.com

March 2022

ACKNOWLEDGEMENTS	5
ENERGY AUDIT	9
ABOUT MES COLLEGE MARAMPALLY	10
ELECTRICITY CONSUMPTION ANALYSIS	11
RENEWABLE ENERGY	19
ANNEXURE-1	20
ANNEXURE-2	27

TABLE OF CONTENTS

ACKN	NOWLEDGEMENTS	5
1.	GENERAL DETAILS	6
2.	ENERGY CONSUMPTION & COST ANALYSIS	7
3.	ENERGY SAVING PROPOSALS	7
4.	AUDIT SUMMARY - ACTIONS	8
5.	ENERGY AUDIT SUMMARY & RECOMMENDATIONS	8
ENER	RGY AUDIT	9
ABOU	UT MES COLLEGE MARAMPALLY	10
ELEC	TRICITY CONSUMPTION ANALYSIS	11
1.	ELECTRICITY BILLS ANALYSIS	11
2.	BILL ANALYSIS	12
1.	ENERGY CONSUMPTION ANALYSIS	13
2.	TARIFF RATES ANALYSIS	13
1.	ENERGY CONSUMPTION ANALYSIS	14
2.	TARIFF RATES ANALYSIS	15
1.	CONNECTED ELECTRICAL LOAD	16
LU	JX MEASUREMENTS	18
W	OOD AND LPG	18
RENE	EWABLE ENERGY	19
ANNE	EXURE-1	20
EN	NERGY SAVING PROPOSAL - 1	20
EN	IERGY SAVING PROPOSAL – 2	21
EN	NERGY SAVING PROPOSAL-3	23
ANNE	EXURE-2	27
1.	LED SPECIFICATION	27
2.	BLDC SPECIFICATION	28
AB	BBREVIATIONS	29
INS	STRUMENTS USED	30
RE	EFERENCES	30
BE	EE CERTIFICATE	31

LIST OF TABLES

TABLE 1 GENERAL DETAILS	DETAILS
TABLE 2 ANNUAL ENERGY CONSUMPTION ANALYSIS	7
TABLE 3: ENERGY SAVING PROPOSALS	7
TABLE 4: ENERGY AUDIT SUMMARY – ACTIONS	8
TABLE 5 BASE LINE DATA OF COLLEGE BUILDING	11
TABLE 7: LIGHT AND FAN LOAD	16
TABLE 9: EC PROPOSAL 1	20
TABLE 10: EC PROPOSAL 2	21
TABLE 11: LIFECYCLE DATA OF LIGHT TYPES	22
TABLE 12: LED SPECIFICATION	27
TABLE 13: BLDC SPECIFICATION	28
TABLE 14: INSTRUMENTS USED	30
FIGURE 2: TARIFF RATE	13
FIGURE 3: MONTHLY KWH VARIATION	14
EICLIDE 4. TADIEE DATE	15

ACKNOWLEDGEMENTS

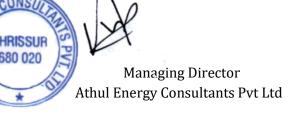
We express our sincere gratitude to the **MES College Marampally, Aluva**, for giving us an opportunity to carry out the project of Energy Audit. We are extremely thankful to all the staffs for their support to carry out the studies and for input data, and measurements related to the project of Energy audit.

1. Adv. A A Abul Hassan	Chairman, College Managing Committee
2. Jb. M A Mohammed	Secretary, College Correspondent
3. Jb. T M Zakeer Hussain	Treasurer, College Managing Committee
4. Dr. Ajims P Mohammed	Principal
5. Dr. Jasmine PM.	Vice Principal & IQAC Co-ordinator
6. Shri Abdul Jabbar CI	Junior Superintendent

Also congratulating our Energy audit team members for successfully completing the assignment in time and making their best efforts to add value.

ENERGY AUDIT TEAM

1. Mr. Santhosh A


Registered Energy Auditor of Bureau of Energy Efficiency (BEE – Govt. of India) Accredited Energy Auditor No – AEA-0275

2. Mr. Ashok KMP

Registered Energy Manager of Bureau of Energy Efficiency (BEE – Govt. of India) Energy Auditor No – EA 25612

3. Mr. Jaideep P P, M Tech, Energy Engineering.

Yours faithfully

1. GENERAL DETAILS

The general details of the MES College are given below in table.

Table 1 GENERAL DETAILS

SL. NO	PARTICULARS	DETAILS
1	Name & Address of college	MES College Marampally, Aluva, Ernakulam
		Kerala 683107
2	Contact person	Dr. Raphika PM
		Assistant Professor & Programme officer of EECC
		Department of Electronics,
		MES College Marampally.
3	Location: Latitude & Longitude	10.1066° N, 76.4115° E
4	No. of Teaching staff	146
6	No. of Non-Teaching staff	60
7	No of students	2685
8	Building area	18885m²
9	Land area	25 acres
10	Number of UG programs	17nos
11	Number of PG programs	09 nos
12	Number of departments	19nos
13	Hostel mates	150 nos
14	Average annual working days	263 days, (139 for odd and 124 for even
	Dag.	semester)
15	DG Set	50 kVA (2 each)
16	Transformer	200 kVA (1 No)

2. ENERGY CONSUMPTION & COST ANALYSIS

The energy consumption and cost for the college campus premises are listed below-

Table 2 ANNUAL ENERGY CONSUMPTION ANALYSIS

Location	Units	Value	Average Cost
		Rs	Rs
College Buildings	kWh	42221	286347
College Hostel	kWh	10937	80161
LPG	Kg	1500	135000
Wood	Tons	18	39000
Diesel	Litres	600	54000
Total(Rs.)			594508

3. ENERGY SAVING PROPOSALS

The following table shows the energy saving proposals

TABLE 3: ENERGY SAVING PROPOSALS

Sl no	Particulars	Annual energy Savings (kWh)	Annual Financial Savings (Rs.)	Investment (Rs)	Simple payback Period (Months)
1	Replacement of T12 and T8 and CFL with LED	5088	36379	43000	14
1	Replacement of ceiling fans with BLDC/BEE star rated fans	2500 and 1500	17875 and 10725	92000 and 68000	62 and 72
	Total energy savings without solar	9008	64979	203000	38
3	Installation of 20kw solar on grid system	22000	157300	14,00,000	108

4. AUDIT SUMMARY - ACTIONS

The actionable summary of the audit report is given in the table below.

TABLE 4: ENERGY AUDIT SUMMARY - ACTIONS

Sl No:	Particulars	Location	Action to be taken	Remarks
1	Replacement of ceiling fans with BLDC fans	Classrooms, Staff rooms	Change the existing old ceiling fans with BLDC fans	Energy consumption will come down
2	Replacement of old split AC with New 5 star rated ones	Computer Labs, Office Rooms	Change the old existing ACs with 5 star ACs.	Energy consumption will come down
3	Replacement of Fluorescent lights with LED	Class rooms, Staff rooms	Replace with LED lights.	Energy consumption will come down

5. ENERGY AUDIT SUMMARY & RECOMMENDATIONS

The summary of the report with respect to each section is as follows.

- 1. Electricity consumption analysis:
- ➤ Presently 1 LT connection in the college premises.
- ➤ College is benefitted with space in its roof top hence they can go for more solar installations in their facility and go for zero billing and claimed as solar powered college or Green College.
- ➤ **Air conditioners:** Replacement of old AC's with new energy efficient star rated AC's.
- ➤ **Light loads:** Most of the lights are changed into LED lights
- ➤ **Ceiling fan loads:** Ceiling fans are installed in majority of the areas by replacing it with Brushless DC fans which consumes in the range of 25 to 30W at full speed, instead of 70W in normal fans, will reduce the power consumption considerably. Also while purchasing new fans priority should be given for BLDC.

ENERGY AUDIT

OBJECTIVES

An energy audit is a key to assessing the energy performance of facility and for developing an energy management program. The typical steps of an energy audit are:

- Preparation and planning
- Data collection and review
- Plant surveys and system measurements
- Observation and review of operating practices
- Data documentation and analysis
- Reporting of the results and recommendations

1.1. Definition of energy auditing

In the Indian Energy Conservation Act of 2001 (BEE 2008), an energy audit is defined as:

"The verification, monitoring and analysis of the use of energy and submission of technical report containing recommendations for improving energy efficiency with cost-benefit analysis and an action plan to reduce energy consumption."

1.2. Objectives of Energy Auditing

The objectives of an energy audit can vary from one plant to another. However, an energy audit is usually conducted to understand how energy issued within the plant and to find opportunities for improvement and energy saving. Sometimes, energy audits are conducted to evaluate the effectiveness of an energy efficiency project or program. In MES College, as per the request, we have assessed the energy consumption and saving opportunities at present scenario.

Methodology for the study

The methodology adopted for energy audit starts from historical energy data analysis, power quality analysis, monitoring of operational practices, system evaluation, cost benefit analysis of the energy conservation opportunities, and prepare plan for implementation. The proposals given in the report includes economical energy efficiency measures to reduce facilities unnecessary energy consumption and cost. The energy conservation options, recommendations and cost benefit ratio, indicating payback period are included in this report.

Details Work

The Scope of Work includes:

- 1. Historical energy data analysis.
- 2. Electrical, Mechanical and Thermal energy analysis.
- 3. Power Quality Analysis.
- 4. Identification of Energy saving opportunities.
- 5. Cost Benefit Analysis.

ABOUT MES COLLEGE MARAMPALLY

M.E.S College -Marampally, situated in the KSRTC Route of Alva-Perumabavoor route, is the dream child of the MES Group of institutions in the field of Higher education. MES Group foreseen that this college requirement would cater to the educational needs of the suburban villages, in and around Aluva and Perumbavoor. M.E.S. College Marampally is a Government Aided college affiliated to Mahatma Gandhi University, Kottayam, established in the year 1995. The College has reaccredited by NAAC with A+ Grade (CGPA, 3.38) which is the first ever highest grade in the State as per the revised process of accreditation.

The Principal, the teaching staff, and the non-teaching staff work together as a well-knit team. The dedication, competence, and diligence of the staff have raised the reputation of the college within a short span of time. The college encourages many co-curricular activities, thus playing a major role in molding the personality and empowering the young ladies to rise to the challenges in their daily life. The main thrust is to make them respond creatively and positively to the various needs of the society and the community they live in. Thus, the NSS, NCC, Career Guidance, AIDS Awareness Cell, Reader's Club and Nature Club function effectively. Apart from these, various Enrichment Programs are being planned and conducted for the holistic development of the students.

The Campus, spread out in a hilly stretch surrounded by lush greenery, is a sure sight of delight for a lover of nature. The College is also in close vicinity to the river Periyar and very near to the city of Kochi and the International Airport, the satellite view of the college is shown in the following Figure 1. The academic building of the college is marked with the college name. The college ground is located west of this building. There is a plantation of banana plants south of the college ground. The College hostel building is located south of this plantation. Other main buildings are located south of the academic building.

The College offers Nineteen UG Programmes such as Computer Applications (BCA), B.Sc. Electronics, Business Administration (BBA), B.Com. (Model II), B.Com. (Taxation), B.Sc. Biotechnology, B.Sc. Microbiology, B.Sc. Physics (Model II) B.Sc. Mathematics (Model II), B.A. English, (Three Main) B.A. Arabic (Model II), B.Sc. Psychology, B. Voc. Logistics Management, B. Voc. Animation & Graphic Design, B. Voc. Software Development & System Administration, B. Voc. Fashion Designing & Management. Voc. Industrial Instrumentation & Automation, B.Voc Tourism Administration & Hospitality, B.Voc Advanced course

in Multisport &Fitness training and Ten Post Graduate programmes viz. M.Sc. Biotechnology, M.Sc. Electronics, M.Com. M.Sc. Microbiology, M.Sc. Biochemistry, M.A. English Language and literature, M.Sc. Computer Science, MHRM and M.Sc. Physics., MSc in Chemistry (Aided)

ELECTRICITY CONSUMPTION ANALYSIS

1. ELECTRICITY BILLS ANALYSIS

The Electricity bills analysis of the college and other buildings are given below:

College Building -1

Table 5 BASE LINE DATA OF COLLEGE BUILDING

	Base Line Data (Based on last Financial ye	ear 2021-22)
1	Electricity provider	KSEBL
2	Tariff	LT-6A/Three
3	Consumer number	1155846010859
4	Connected Load (kW)	81.832 kW
5	Average monthly electricity consumption (kWh) for	3101
	college	
6	Average Fixed charges	5330
7	Energy charge (Rs / kWh)	7.11
8	Average monthly electricity cost (Rs) College + Hostel	23862

College Hostel

	Base Line Data (Based on last Financial ye	ear 2021-22)
1	Electricity provider	KSEBL
2	Tariff	LT-6A/Three
3	Consumer number	1155841015860
4	Connected Load (kW)	15.898 kW
5	Average monthly electricity consumption (kWh)	1728
6	Average Fixed charges	1040
7	Energy charge (Rs / kWh)	7.11
8	Fixed charge (Rs / kW)	15
9	Average monthly electricity cost (Rs)	13360.00

2. BILL ANALYSIS

The average monthly energy consumption details of the college are given below:

Month	Consum ption	Monthly Export from solar	Energy Charge	Fixed Charge	Electricity Duty	Surch arge	Meter Rent	Total
Mar-21	5120	0	16120	5330	1612.00	0	0	23062
Apr-21					0.00	94	0	0
May-21	4040	40	7280	5330	728.00	65	0	13338
Jun-21	4040	20	16250	5330	1625.00	171	0	23205
Jul-21	2153	0	16250	5330	1625.00	0	0	23205
Aug-21	2080	0	19110	5330	1911.00	43	0	26351
Sep-21	2660	20	28860	5330	2886.00	86	0	37076
Oct-21	2660	14	14170	5330	1417.00	0	0	20917
Nov-21	3205	0	23361	5330	2336.10	0	0	31027
Dec-21	4397	0	39390	5330	3939.00	0	0	48659
Jan-22		0		5330		0	0	0
Feb -22	4829		31070	5330	3107.00		0	39507

College Hostel

Month	Consumption	Energy Charge	Fixed Charge	Electricity Duty	Surcharge	Meter Rent	Total
Mar-21	2808	18252.95	1040	1825.30	0	15	21136
Apr-21	3185	20702.9	1040	2070.29	15	15	23831
Jul-21	1276	8293.9	1040	829.39	46	15	10181
Aug-21	578	3757	1040	375.70	0	15	5190
Sep-21	377	2148.9	1040	214.89	9	15	3421
Oct-21	2146	13949	1040	1394.90	0	15	16402

1. ENERGY CONSUMPTION ANALYSIS

The below figure shows the monthly consumption of college.

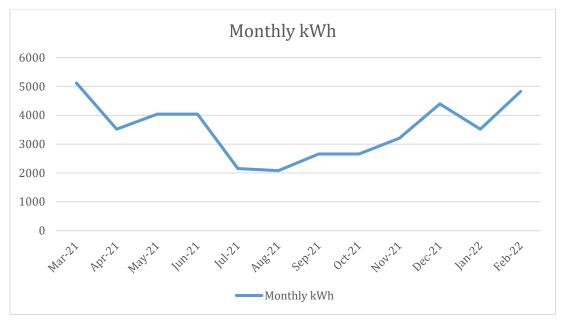
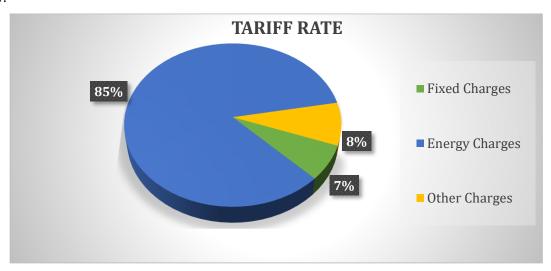



FIGURE 1: MONTHLY KWH VARIATION

- In the last financial year, consumption is found to be higher in the month of March -21. And less in the month of August 2021.
- kWh consumption varies as per the seasonal variation.
- 2. TARIFF RATES ANALYSIS

The average monthly energy and demand charges for the past financial year is represented in Figure below.

FIGRE 2: TARIFF RATE

Inference

- i. Average demand charges for the past one year was Rs 5330/ per month and energy charges was Rs 21186/ per month.
- ii. The energy charges came about 88% of the total bill.

1. ENERGY CONSUMPTION ANALYSIS

The below figure shows the monthly consumption of college hostel

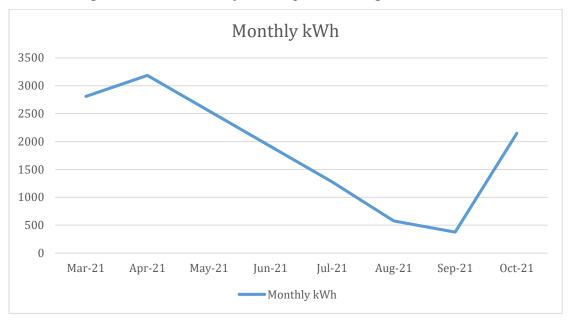


FIGURE 3: MONTHLY KWH VARIATION

- In the last 6 months, consumption is found to be higher in the month of April 21. And less in the month of September 2021.
- KWh consumption varies as per the seasonal variation.

2. TARIFF RATES ANALYSIS

The average monthly energy and demand charges for the past financial year is represented in Figure below of the college hostel

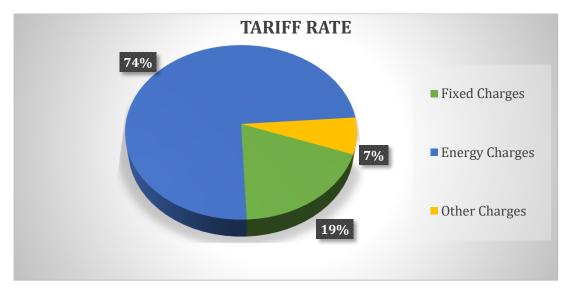


FIGURE 4: TARIFF RATE

Inference

- iii. Average demand charges for the past one year was Rs 1040/ per month and energy charges was Rs 11184/ per month.
- iv. The energy charges came about 84% of the total bill.

1. CONNECTED ELECTRICAL LOAD

The connected load details of MES College -Marampallly are given below in the Table:

TABLE 6: CONNECTED ELECTRICAL LOADS

Sl. No:	Particulars	Power in kW
1	Lighting load	18.65
2	Ceiling Fan	13.86
3	UPS	20
4	Computer and Printer load	15.75
5	Air conditioner	6.3
6	Pumps	9.5
7	Miscellaneous	8.9
	Total	92.96

LIGHT AND FAN LOADS

The light and fan details in the college building are given below:

TABLE 7: LIGHT AND FAN LOAD

Particulars	Total Power	Quantity	Total Power
	Watts	Nos	kW
Т8	36	180	6.48
T12	40	100	4
CFL	15	40	0.6
CFL	08	20	0.16
LED	8	90	0.72
LED	15	50	0.75
LED Tube	18	280	5.04
Ceiling fan	60	224	13.44
Metal Halide	150	06	0.9
Total			32.09

COMPUTER AND UPS LOAD

UPS Load

Sl. No:	Location	UPS		Batto	ery	
		Rated kVA	Make	Rating	Nos	Make
1	Electrical Room	12.5	Igatech	12V, 60Ah	20	Exide
2	Electrical Room	2	Igatech	12V, 100Ah	6	Exide
3	Project Management Lab	10	Unitek	12V, 48Ah	20	Exide
4	Library	10	Igatech	12V, 60Ah	20	Exide
5	BCA Computer Lab	20	Igatech	12V, 100Ah	12	Exide
6	BCA Computer Lab	20	Igatech	12V, 100Ah	12	Exide
7	Instrumentation Lab	10	Igatech	12V, 100Ah	12	Exide

Computer loads

Particulars	Rated Power	Quantity	Total Power
Printer	120	53	5.83
Desk top	50	315	15.75
Computers			
Total			41.58

OTHER LOADS

In this section the canteen loads, small equipment's in labs etc. to be included and the details are given below:

TABLE 8: OTHER CONNECTED ELECTRICAL LOADS

Particulars	Rated Power	Qty	Total Power
	Watts	Nos	kW
Pump motor	3000	2	6
Bore well pump	2500	01	2.5
Submersible pump	1000	01	1
Mixer	350	1	0.35
Refrigerator	250	4	1
Water Steamer	1000	1	1
Water cooler	300	12	3.6
LED Projectors	200	15	3
Air conditioners	2300	20	46
Air conditioner	2500	01	2.5
	66.95 kW		

LUX MEASUREMENTS

According to National Lighting code-2010 BIS to determine the overall energy efficiency of lighting system using measurements and methods, which is applicable to all commercial buildings. One of the methods is Illuminance method, which is the most practicable one. Details are given in the section. Lux levels of some areas are given in the Table 15. The lux levels mentioned as satisfactory need to be improved.

Sl. No.	AREA	Measured Lux	Requ ired Lux	Remarks
1	Department of Bio science	160	150	Satisfactory
2	Bsc Bio technology	160	150	Good
3	Lab of BCA	140	150	Satisfactory
4	Office	190	150	Good
5	B com Ist	165	150	Good
6	Entrance	135	150	Good
7	Department of Electronics	145	150	Good
8	Chemistry 2nd	150	150	Good
9	Chemistry Lab	195	150	Good
10	Bio Technology lab	120	150	Satisfactory
11	Chemistry Department	145	150	Good
12	Principal office	138	150	Good
13	1st MSC Maths	148	150	Good
14	Department MSC Maths	170	150	Good
15	Physics lab	170	150	Good
16	Bsc Psychology	190	150	Good
17	1st BA English	164	150	Good
18	Electronic lab	175	150	Good
19	Physics computer lab	135	150	Satisfactory
20	English computer lab	190	150	Good
21	English Department	160	150	Good
22	Auditorium	170	150	Good

WOOD AND LPG

The LPG and wood is the main fuel in canteen and college hostel. The details of the LPG consumption in the last academic year is given in the Table 13. The college hostel consumed 28 cylinders of LPG in the last academic year.

Location	Wood consumption	LPG consumption
	TONS	Kg
Canteen	9	960
Hostel	9	540
TOTAL	18	1500

RENEWABLE ENERGY

MES Marampally College installed 10kWp on grid solar power plant on their main building roof top of 30 numbers of 325Wp, Waree make mono crystalline panels. K star invertor is used. By using this solar power utilization approximately 12000 kWh electrical energy is aved per annual in electricity. 10% of KSEB power is reduced by using solar power plant

PV Details

Sl. No.	Particulars	Details
1	PV capacity	10 KWP
2	Wattage of module	325 wp
3	Module make	Waree
4	Module type	mono-crystaline silicon perc
5	Open circuit voltage	45.35 V
6	Short circuit current	9.55 A
7	Maximum peak Voltage	36.85 V
8	Maximum peak Current	8.82 A

Invertor Details

Sl. No.	Particulars	Details
1	Make	K Star
2	Model no	KSG-10K
3	Max PV array open voltage	1000 Vdc
4	Nominal Input Voltage	620 Vdc

ANNEXURE-1

ENERGY SAVING PROPOSAL - 1

REPLACEMENT OF CEILING FANS IN THE OFFICE WITH ENERGY EFFICIENT BLDC FANS Background

A BLDC fan takes in AC voltage and internally converts it into DC using SMPS. The main difference between BLDC and ordinary DC fans is the commutation method. A commutation is basically the technique of changing the direction of current in the motor for the rotational movement. In a BLDC motor, as there are no brushes, so the commutation is done by the driving algorithm in the Electronics. The main advantage is that over a period, due to mechanical contact in a brushed motor the commutators can undergo wear and tear, this thing is eliminated in BLDC Motor making the motor more rugged for long-term use. To explain, BLDC technology in simpler terms, BLDC uses a combination of Permanent Magnets and Electronics to achieve the kind of efficiency and performance, it delivers. A BLDC fan composes of 3 main components: - 1. Stator 2. Rotor 3. Electronics

Proposal

Replace the ceiling fans with BLDC in the as per preference of operating hours as office areas., staff rooms and in security cabin and in hostels the calculation for the savings is given in the table.

TABLE 9: EC PROPOSAL 1

Particulars	Units	BLDC fan	With BEE star rated
Existing Ceiling Fans	Watts	60	60
Proposed BLDC Fans	Watts	35	45
Difference in Wattage	Watts	25	15
Avg No: of working hours/day	Hrs	10	10
No: of working days per year (Average)		250	250
No: of working hours per annum	Hrs	2500	2500
Number of Fans operating	Nos	40	40
Energy Saving per Annum	kWh	2500	1500
Cost per kWh	Rs	7.15	7.15
Annual Financial Savings	Rs	17875	10725
Cost of BLDC Fans	Rs	2500	1900
Salvage value of fan	Rs	200	200
Investment for Fans	Rs	92000	68000
Simple Payback period	Months	62	76

ENERGY SAVING PROPOSAL - 2

REPLACEMENT OF FLUORESCENT TUBES WITH ENERGY EFFICIENT LED LIGHTS

At present LED lights are used in very few areas. Replacement of Fluorescent lights to be done in phase manner with LED lights.

Particulars		T-12	T-8	CFL
Existing Fluorescent lights	Watts	40	36	15
Proposed LED light	Watts	18	18	8
Difference in Wattage	Watts	22	18	7
Avg No: of working hours/day	Hrs	8	8	8
No: of working days per year (Average)	Nos	200	200	200
No: of working hours per annum	Hrs	1600	1600	1600
Number of Lights operating	Nos	40	120	20
Energy Saving per Annum	kWh	1408	3456	224
Cost per kWh (Average)	Rs	7.15	7.15	7.15
Annual Financial Savings	Rs	10067	24710	1602
Cost of LED light	Rs	250	250	150
Investment for LED lights	Rs	10000	30000	3000
Simple Payback period	Months	12	15	23

Summary

TABLE 10: EC PROPOSAL 2

Annual Energy Savings	kWh	5088
Total Financial Savings	Rs	36379
Total investment	Rs	43000
Payback period	Months	14

Reason for change in the lighting system

- ➤ Lighting quality can have a dramatic influence on the attitude and performance of working persons, if they have an environment that with proper uniform lighting.
- ➤ In addition to the lumens per watt which is a lighting quantity calculation lighting quality and life of lighting system is also to be considered.
- ➤ Lighting quality can be divided into Uniformity, Glare, Colour rendering Index, coordinated colour temperature.
- ➤ In case of consistency and in uniformity, the life time of LED is far better than CFL s and FTLs.
- > Deterioration of lumens or lux level in FTLs and CFL are more as compared with LED which is consistent during in its life time.
- > Considering VCP (Visual Comfort Probability) LED is better option than FTLs and CFL because the glare value is lesser.
- > The LED are whitish in colour than FTLs which is giving a better feeling of brightness to the persons occupied or working
- > CCT of LED is 5000k which is white as compared with lesser CCT for FTLS of 4500 k
- > There is no mercury content in the LED as compared with CFL and FTL s hence it is environmentally supportive.
- ➤ The life cycle data of tube lights with LED is given in the table below.

Table 11: Lifecycle data of light types

Type of lamp	Typical life in Hours	Cost per lamp	No: of lamps required during LED lifetime (led 60,000 Hours)	Replacement cost per lamp	Approximate maintenance expense for replacement	Total cost per lamp
T12	5000	45	12	540	500	1040
Т8	5000	45	12	540	500	1040
T5	5000	100	12	1200	500	1700
LED	60000	800	1	800	0	800

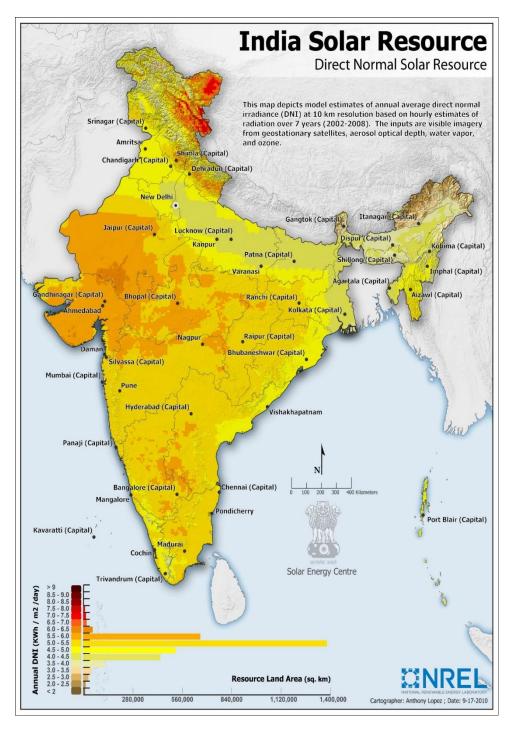
ENERGY SAVING PROPOSAL-3

INSTALLATION OF 20 kW SOLAR ON GRID SYSTEM

The Sun is an inexhaustible, reliable and non-polluting source of power. Since the inception of life on earth, the only energy that was available came from the sun. The time is now approaching when mankind will again depend upon the sun as dominant energy source. We are aware that fossil fuels are not going to last forever. A growing worldwide concern for conservation of energy has reignited our interest in ecologically sustainable materials, processes and sources of energy.

Of the numerous renewable sources of energy known to mankind, Solar Photo Voltaic or SPV is one that has the potential to supply power for our future needs. The advantages of solar power are:

- The solar energy is more evenly distributed in the world than wind or biomass.
- It is well proven and demonstrated technology
- It promises to be most cost-effective renewable power at high volumes.


In addition, the solar photovoltaic technology offers following advantages:

- No recurring fuel cost
- Clean, silent and no moving parts
- Modular, Reliable with Low Maintenance
- Environmentally sound, does not contribute to greenhouse gas emission.
- Can be installed at the point of use and prevents transmission line losses.
- Solar panels have life in excess to 25 years and can withstand high winds, severe hail impact, high humility, ambient temperatures.

The solar energy potential in India is immense due to its convenient location near the Equator. India receives nearly 3000 hours of sunshine every year, which is equivalent to 5000 trillion kWh of energy.

The following image shows the solar generation potential of India.

LOCATION OF ST. ALOYSIUS COLLEGE

	Unit	Climate data location
Latitude	°N	9.36143
Longitude	°E	76.47597
Elevation	m	08
Average Relative humidity	%	72
Average Insolation	kWh/r	n ² /d 5.1

Climate parameters of last 22 years average

Month	Air temperature (Average)	Relative humidity	Daily solar radiation horizontal kWh/m²/d	Atmospheric pressure kPa	Wind speed	Earth temperature
January	24.9	55.5	5.49	96.6	4.23	26.3
February	25.8	56.2	6.07	96.6	3.54	28.4
March	26.9	59.5	6.52	96.5	3.94	30.5
April	26.4	71	6.39	96.4	4	29.8
May	25.8	77.2	5.6	96.3	4.71	28.5
June	24.6	83.9	3.75	96.2	7.04	25.9
July	24	85.1	3.55	96.3	6.84	24.8
August	23.8	84.8	4.07	96.4	6.56	24.8
September	23.9	82.4	4.93	96.4	4.83	25.5
October	24.4	78.6	4.74	96.5	3.59	25.8
November	24.9	65.6	5.01	96.6	3.96	25.9
December	24.9	56.6	5.27	96.7	5.01	25.8
Annual	25	72	5.1	96.4	4.86	26.8

Design Space Requirement for Panel Mounting:

A minimum shadow free space of 8 to $10m^2$ is required for the solar panel mounting for the capacity of 1KW. The panel must be mounted facing south with appropriate inclination for obtaining maximum output from installation. Suitable structure according to wind speed and roof structure must be used without shading the panel surface.

Space availability in college at roof top: 200 m²

Approximate possible installation of solar power plant: 20 kW

Solar PV modules and Inverter:

Solar PV panels of 300 W or above must be selected for the rooftop installation above 10KW. The efficiency of individual panel must not be less than 15%. String inverter with MPPT charge controllers is more suitable for the solar power plant installation in roof top. Equipment and installation must be complied with CEA grid regulations-2013

SAMPLE SYSTEM ARCHITECTURE

Electrical

Component	Production	Fraction
Component	(kWh/yr.)	%
PV array	28,000	100
Grid purchases	0	0
Approx. Total consumption	28,000	

As the present annual unit consumption through grid is only 22,000 units, by the installation of 20 kW system, the college can be entirely supplied from the solar power plant. Details of Solar PV system and its possible production rate is given below in table

Quantity	Units	Value
Rated capacity	kW	20
Mean output	kWh/d	80
Capacity factor	%	17.1
Total production	kWh/yr	28,000
Maximum output	kW	18
Present annual average consumption	kWh	22,000
through grid		
PV penetration	%	100

Summary:

Description	Value
Approximate unit savings per year (kWh)	22,000
Cost per unit of electricity (Rs)	7.15
Approximate annual financial savings (Rs)	157300
Approximate investment for installation of SPV system (Rs)	14,00,000.00
Payback period (years)	9

ANNEXURE-2

1. LED specification

The Department of Electronics and information technology issued "Electronics and information Technology goods order 2012" on $3^{\rm rd}$ October 2012 the following standards for LED lamps are covered.

- 1. IS 15885 (Part -2/section 13)
- 2. IS 16102 (Part-1): 2012

As per this order LED manufactures to get their product tested from BIS recognised labs.

Thus, the following electrical parameters and standards should ensure while purchasing LED in future based on the BIS standards. These are the minimum technical requirements for the acceptance of LED. Also, the LED test certificates as per the various standards mentioned below should be examined while purchasing.

TABLE 12: LED SPECIFICATION

Sl no	Parameters	Requirements	Applicable IS
1	Light source	Light source SMD LED chip	
2	System Efficacy	>= 110 lumen /watt	IS 16106:2012
3	LED Driver Efficiency	Minimum 85%	
4	Harmonics	Maximum 10%	IS 16102-2-2012
5	Power factor	Minimum 0.95	IS 16102-2
6	Frequency	50 Hz ±3%	LM-79 report
7	Operating voltage	110V - 320V	LM 79 report
8	Surge voltage	>4 kV	LM 79 report
9	Ambient temp	-10 to 50 deg C	LM 79 report
10	Degree of protection	IP 66	IS 10322
11	CRI	Minimum 70	IS 16102 - 2

2. BLDC SPECIFICATION

Normal trend of one ceiling fan working hours with present cost while replacing with BLDC fan and the payback period is given in below table.

Number of working hours/day for a single ceiling fan	Hour s	9	10	11	12	13	14	15	16	17	18	19	More than 20
Simple payback period after replacement with BLDC	Years	5	5	4	4	4	3	3	3	3	3	3	2

The BLDC fan test certificates as per the various standards mentioned below should be examined while purchasing.

TABLE 13: BLDC SPECIFICATION

Sl no	Parameters	Requirements	Applicable IS
1	Air delivery	215 CMM	IS 374 - 2019
2	Harmonics	Maximum 10%	IS 374 - 2019
3	Power factor	Minimum 0.95	IS 374 - 2019
4	Frequency	50 Hz ±3%	IS 374 - 2019
5	Insulation resistance	>2 MΩ	IS 374 - 2019
6	Speed	350 rpm	IS 374 - 2019
7	Maximum temperature rise	70 deg C	IS 374 - 2019
8	Degree of protection	IP 65	IS 10322

ABBREVIATIONS

APFC : Automatic Power Factor controller

AVG : Average

BDV : Breakdown voltage

BEE : Bureau of energy efficiency
CEA : Central electrical authority
CFL : Compact fluorescent lamp
CFM : Feet cube per minute
DB : Distribution Board
DG Set : Diesel Generator Set
EC : Energy Conservation

FD : Forced draft

HPSV : High-pressure sodium vapour

HT : High Tension ID : Induced draft

IEC : International electro technical commission

IEEE : The Institute of electrical and electronics engineers

IS : Indian Standard KG : Kilogram

KVA : Kilo Volt Ampere
KVAH : Kilo volt Ampere Hour
KVAR : Kilo volt-ampere
KW : Kilo Watts

KWH : Kilowatt-hour LED : Light emitting diode

MAX : Maximum MH : Metal halide

NEMA : National Electrical Manufacturers Association

OLTC : On load tap changer
ONAN : Oil natural air natural
PCC : Point of common coupling

PSI : Pound square inch

RMD : Registered Maximum demand SEC : Specific electricity consumption

SFU : Switch Fuse Unit
SLD : Single Line Diagram
TDD : Total demand distortion
THD : Total harmonics distortion
TOE : Tonne of oil equivalent

UPS : Uninterruptible power supply VFD : Variable frequency drive

INSTRUMENTS USED

TABLE 14: INSTRUMENTS USED

SL.NO	EQUIPMENT DESCRIPTION	MAKE & MODEL
1	Power energy & harmonic Analyser	Krykard ALM 35
2	Thermal Imager	FLIR E50

REFERENCES

- 1. BEE energy audit books
- 2. CEA regulations of grid connectivity-2007
- 3. IEEE Std. 519-1992.
- 4. National lighting code 2010

BEE CERTIFICATE

BUREAU OF ENERGY EFFICIENCY

Examination Registration No.: EA-7597

Accreditation Registration No.: AEA-0275

Certificate of Accreditation

The certificate is subject to the provisions of the Bureau of Energy Efficiency (Qualifications for Accredited Energy Auditors and Maintenance of their List) Regulations, 2010.

This certificate shall be valid until it is cancelled under regulation 9 of the Bureau of Energy Efficiency (Qualifications for Accredited Energy Auditors and Maintenance of their List) Regulations, 2010.

On cancellation, the certificate of accreditation shall be surrendered to the Bureau within fifteen days from the date of receipt of order of cancellation.

Your name has been entered at AEA No...0275... in the register of list of accredited energy auditors. Your name shall be liable to be struck out on the grounds specified in regulation 8 of the Bureau of Energy Efficiency (Qualifications for Accredited Energy Auditors and Maintenance of their List) Regulations, 2010.

Given under the seal of the Bureau of Energy Efficiency, Ministry of Power, this 12th day of February, 2018

Secretary,

Bureau of Energy Efficiency

New Delhi

